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“There is [...] a great similarity between the problems provided
by the mysterious behavior of the atom and those provided by
the present [...] paradoxes confronting the world. In both cases
one is given a great many facts which are expressible with
numbers, and one has to find the underlying principles. The
methods of theoretical physics should be applicable to all
those branches of thought in which the essential features
are expressible with numbers.”

Paul Dirac’s speech at the Nobel Banquet, 1933.



Micro-macro: How do we get from the micro choices of individuals to the macro phenomena 
of the social world?

Something like the micro-macro problem comes up in every realm of science, often 
under the label of “emergence”: How is it, for example that one can lump together a 
collection of atoms and somehow get a molecule? How is that one can lump together a 
collection of molecules and somehow get amino acids? How is it that one can lump together a 
collection of aminoacids and other chemicals and somehow get a living cell? How is that one 
can lump together a collection of living cells and somehow get complex organs like the brain? 
And how is that one can lump together a collection of organs and somehow get a sentient 
being that wonders about its eternal self? 

Seen in this light, sociology is merely at the tip of the pyramid of 
complexity that begins with subatomic particles and ends with global 
society. And a each level of the pyramid, we have essentially the 
same problem-how do we get from one “scale” of reality to next?

(Emergence: P.W.Anderson, More is different, Science (1972))

Micro-macro and emergence

D. Watts, Everything is obvious. How common sense fails, 2011



EMERGENCE

A SYSTEM HAS EMERGENT 

PROPERTIES WHEN AN EFFECTIVE 

THEORY OF THE SYSTEM AT SOME 

SCALE OR LEVEL OF 

ORGANIZATION, IS QUALITATIVELY 

DIFFERENT FROM THE LOWER-

LEVEL THEORY

A Definition:



SOCIETY AS AN EMERGENT PHENOMENA

Individual                Society

Psycohistory: H. Seldon

EMERGENCE
IS NOT

STATISTICS!!

W. Weaver, Science and Complexity,
American Scientist 36, 536 (1948)

There is no such thing 
as society:

there are individual 
men and women

Society is not made up 
of human beings, but
constructed in terms of 
their communications

M.Thatcher

K.Marx

-Simple problems
-Statistical Problems
-Organized Complexity



Agent characterization: state
Binary +1, -1 ; Continuous [0,1]; Vector

Strategy and Pay-off 

Interaction rules among agents
Interaction force Social mechanism

Pairwise interaction (two body /multiple collisions)
Higher order interactions

Network of interactions: Who interacts with whom?

Activity patterns: When interactions occur

Agent/Individual Based Models



CONSENSUS 
and

CONTAGION
PROBLEMS

CONSENSUS: When and how the
dynamics of a set of interacting units
(agents) that can choose among several
options leads to a consensus in one of
these options, or when a state with
several coexisting options prevails.

-VOTER MODEL

-SIS epidemic model

-SCHELLING/GRANOVETTER’S MODEL

-Evolutionary Game Theory: Coordination

-Imitation

-Disease transmission

-Threshold for social pressure

-Maximize Pay-off (fitness)

MODELSSOCIAL MECHANISMS

Interaction rules

Dyadic /two body
interaction

Group/nonlinear
interaction

Voter
Nonlinear Voter
Coordination Game 

Threshold models
(Schelling/Granovetter)

CONTAGION: When and how a
contagious entity propagates from a seed
to a whole system of interacting agents?

SIS

Consensus

Contagion



Contagion processes

• Disease outbreaks.
• Epidemics
• ….

How and when a contagious entity propagates from a seed  to a whole system?

Two classes of contagion processes: SIMPLE and COMPLEX

SIMPLE  CONTAGION COMPLEX CONTAGION

• rumors, 
• fads,
• innovations, 
• riot paticipation
• information spreading.
• ….

Social contagion of behaviors and innovations

SIS: Dyadic two body interaction Threshold Models: Group interaction 

Continuous transition Cascade discontinuous transition



Agent characterization: state
Binary +1, -1 ; Continuous [0,1]; Vector

Strategy and Pay-off 

Interaction rules among agents
Interaction force Social mechanism

Pairwise interaction (two body /multiple collisions)
Higher order interactions

Network of interactions: Who interacts with whom?

Complex networks: Tie heterogeneity (Degree distribution P(k))
Small world, Scale free, Community structure, Hypergraphs

Co-evolution : Ties are not persistent

Activity patterns: When interactions occur

Agent/Individual Based Models



Networks of interaction

MULTILAYER/ 
MULTIPLEX

Higher Order interactions
HYPERGRAPHS

An Hypergraph H is a pair H=(X,E)

X= Set of nodes or vertices

E= Set of nonempty subsets of X:
Hyperedges

7 vertices and 4 hyperedges

F. Battiston et al, Phys. Rep. 874, 1 (2020)
G. Bianconi, Higher Order Networks, CUP (2021)

ER Random Small World Scale Free

Community 
structure

nodes represent agents, 
layers represent contexts 



Dynamics of Networks:

1. Dynamics OF network formation: Structure created by
individual choices/actions

2. Dynamics ON the network: Actions of individuals constrained
by the social network

3. Co-evolution of agents and network :
Circumstances make men as much as men make circumstances

..new research agenda in which the structure of the network is no longer a given 

but a variable.....explore how a social structure might evolve in tandem with the 

collective action it makes possible (Macy, Am. J. Soc. 97, 808 (1991))

Final Goal: Understanding dynamical processes of group formation and 
social differentiation: Emergence of social dynamical networks with

-Social structure

-Weak links 

-Community structure

Rightwing view

Leftwing view

Networks of interaction: CO-EVOLUTION
M. Zimmerman, et al Lecture Notes in Economics and 

Mathematical Systems 503, (2001)



Agent characterization: state
Binary +1, -1 ; Continuous [0,1]; Vector

Strategy and Pay-off 

Interaction rules among agents
Interaction force Social mechanism

Pairwise interaction (two body /multiple collisions)
Higher order interactions

Network of interactions: Who interacts with whom?

Complex networks: Tie heterogeneity (Degree distribution P(k))
Small world, Scale free, Community structure

Co-evolution : Ties are not persistent

Activity patterns: When interactions occur

Constant rate or temporal heterogeneity (Aging)

Agent/Individual Based Models



Human Activity Patterns

Bursty interaction pattern between two twitter users

P(t) Nonpoissonian Temporal Correlations P(t/t´)

Inter-event time (IET) distribution

Question:

Role of the Timing of Interactions. 
How is this modeled in the updating processes?

Standard Monte Carlo simulations assume a constant rate of interaction

Artime et al, Sci. Rep. 7:41627(2017)



Example: the adoption of programming languages

Aging

AGING: The longer you are in a given state (the longer your 

persistence time) the smaller is your probability to update



IMITATION

Herding 
Behavior



Voter Model: Imitation Dynamics

Clifford and Sudbury, Biometrika (1973)
Holley and Ligget, Ann. Probability (1975)

Two options:

Interaction:  copy the state of one of your neighbors at random

Question: When and how consensus is reached by imitation?  

First lesson: Choice of variables 

Average number of nodes in one of the states is conserved

Local variable: ρ Average number of active links (interface density) 



Voter Model in regular networks
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Unbounded growth of domains of absorbing states

d=2d=1



Regular d>2, and complex networks: Random, Small World, Scale Free Networks,…

ξ>ρ ~ state metastable of  timesurvival  N,  )( Nt

d>2: No Coarsening : Long lived, dynamically active disordered states

t /~ te t survival time



Finite size fluctuations take the 
system to an absorbing stateDisordered states.

Characteristic size of 
ordered domain

1 l

Role of topology of interactions



Role of topology of interactions

Barabasi-Albert Scale Free Networks

Degree distribution: P(k)   k -3

Characteristic size of 
ordered domain

1 l

)1(2

2





k

k

Pair approximation for uncorrelated networks



Klemm and Eguíluz, 
Phys. Rev. E 65,036123 (2002)

1D Scale free net?

Structured SF: SSF

Scale free but 
high clustering and 1d

P(k)   k -3

L  N       C  N0

Degree distribution or network disorder
are not relevant

2/1~  t
2

1 Nt
Dimensionality determines when imitation

leads to growing agreement

SSF

1d regular

SSF
<k>=8

Role of topology?: Dimensionality



Social Imitation

Voter Model

Breaking and..

..establishing ties

Rewiring

changing 
state
1-p

rewiring
p

COEVOLUTION: 

Dynamics on the network coupled with dynamics of the network

F. Vázquez, et al, Phys. Rev. Lett. 100, 108702 (2008)

Coevolving Voter Model

Plasticity p: Imitating  vs. choosing neighbors



Coevolving Voter Model

Imitation
Choosing neighbors

Network Fragmentation  Transition

Transition

Fragmentation due to 

competition of time scales:

- evolution of the network

(link dynamics) 

- evolution on the network

(node state dynamics)

Critical value of plasticity pc

F. Vázquez, et al, Phys. Rev. Lett. 100, 108702 (2008)



Fragmentation transition

Size of largest network component.

Active phase → Connected network (Smax/N = 1)
(N = ∞)

Frozen phase → Fragmented network (Smax/N ≈ 0.5)

p<pc : slow rewiring keeps network connected 
until system fully orders and freezes in 
a single component.

p>pc : fast rewiring leads to fragmentation of 
network into two components before 
system reaches full order.

Active links in surviving runs.

Convergence times

p=pc
௖

Coevolution              Social Polarization



Beyond Random Imitation: NONLINEARITY 

Flipping probability of node i:

ai=3
ki=4

Nonlinear voter model:

q=1 Voter Model Neutral situation: 

Random imitation process

q>1 Probability below random imitation

q<1 Probability above random imitation

ai  number of active links of node i

ki number of links of node i. Degree

q: Degree of nonlinearity
Nonlinear effect of local majorities

Castellano et al PRE (2009); Schweitzer et al EPJB, 2009
Social impact theory, Nowak et al Psychological Rev.1990



Coevolution in Nonlinear Voter Model

Dynamically 
active

Absorbing

Absorbing

Continuous 
absorbing
transition

Discontinuous 
fragmentation

transition

Discontinuous 
absorbing
transition

VM

Min and San Miguel, Sci. Rep. (2017)

Nonlinear 
parameter

Network plasticity

Random Network



Human Activity Patterns: Aging

Fernandez-Gracia et al, Phys. Rev. E (2011); Artime et al, Sci. Rep. 7:7166(2017)

1.with activation probability each agent i becomes active. Take

2. active agents update their state x according to voter model dynamical rule

Active agents that change state in step 2 reset t  0

3. ti = ti + 1

AGING

Activation prob. becomes a function of  a persistence time t.

Updating is part of the dynamical model. 

Coupled dynamics of state x and ‘internal time‘ ti

AGING: The longer you remain in a state, less probable to update it 

UPDATE RULE:

Each agent is characterized by two variables: state x and ‘internal time‘ ti

corresponds to Monte Carlo Random Asyncrhonous Update



Human Activity Patterns: Aging

Fernandez-Gracia et al, Phys. Rev. E (2011); Artime et al, Sci. Rep. 7:7166(2017)

FULLY CONNECTED NETWORK

AGING

No aging

Ordering

No ordering.
Dynamical coexistence

Density of active links

A
g

in
g

 u
p

d
ate

N=1000, 2000, 4000

Aging induced ordering

Aging societies more prone to agreement

ER  RANDOM NETWORK  <k>=6



si=1

si=0

Buy

Sell

?ki

Part II – Herding behavior and financial markets

IMPERFECT IMITATION: The noisy voter model

A. Kirman, Quarterly J. of Economics (1993)
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s j
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h
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(1 − s j)

Transition 
rates

si=1

si=0

Buy

Sell

?ki

Part II – Herding behavior and financial markets

HERDING

Idiosyncratic

Noise

Free will

IMPERFECT IMITATION: The noisy voter model
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tIdiosyncratic behavior < Herding behavior Idiosyncratic behavior > Herding behavior

Optimistic consensus

Pessimistic consensus

The noisy voter model: Mean field

Finite-size
discontinuous 
noise induced

transition
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Voter Model + Noise + Aging

Artime et al, Phys. Rev. E 98, 042143 (2018)

Noisy Voter Model                         + AGING    

Noise induced finite size

DISCONTINUOUS TRANSITION
CONTINUOUS 

TRANSITION ?



Voter Model + Noise + Aging

=1/2, ௖n=2 ௖=4

An aging-induced phase transition
Ising universality class

ER net

Ising exponents in d=2,3

Asymmetric aging

Mean internal times

Artime et al, Phys. Rev. E 98, 042143 (2018)



Threshold Model of Complex Contagion
M. Granovetter The American J. Sociol. 83 (1978)

D.J. Watts, PNAS 99, 5766 (2002) 

X X

adopting neighbors

Global 
cascades

No global 
cascades

𝒌

𝟏/𝑻

𝒌

Discontinuous transition
for spreading from an

initial seed.

J. P. Gleeson and D. J. Cahalane, Phys. Rev. E 75, 056103 (2007) 

Random networks

Complex Contagion
Social pressure

<
𝑘

>

k: node degree

T: Threshold 

Cascade condition

Global 
cascades

No Global 
cascades

No aging Aging

Random networks

Cascade condition
is not modified by aging

𝒌

𝟏/𝑻

𝒌

<
𝑘

>



Aging in Threshold Model Dynamics

No aging

Aging

Random ER network

N=8000

T=0.2

Average degree z=3

No aging Aging

Density of adopted agents: From exponentials to power-laws

Numerical integration
MC Simulation

Abella et al., Phys. Rev. E 107, 024101 (2023)



Aging in TM: Analytical results

Markovian dynamics: Rate equations for 

sk,m,j(t) : density of non-adopted nodes with degree k, m neighboring adopted agents and age j

Density of adopted agents ρ(t)

No aging

Aging

Theory Simulation a Simulation d

No aging

Aging

Abella et al., Phys. Rev. E 107, 024101 (2023)

T=0.1 z= 5,5,8



Human Activity Patterns: Aging

Heterogeneous interevent time distributions produce qualitative
changes: 

Voter Model: From dynamical coexistence of opinions to ordering dynamics

Noisy Voter Model:    From finite size discontinuous transition to
well defined continuous transition

Threshold Model (Complex Contagion): From exponential to power-law cascades

Beware of social simulations of interacting agents based 
on a constant activity rate: 

Human activity patterns need to be implemented as an
essential part of social simulation.

Aging results in Heterogeneous Activity Patterns



Co-evolutionary Threshold Model

Byungjoon Min and M. San Miguel, Entropy (2023)

probability p
plasticity

𝑃                   = 𝜃
𝑚

𝑘
− 𝑇

T T T

Coevolution suppresses the onset of global cascades

p=0
no coevolution

cascade condition
coevolution

௞

ଵ/்

௞

Mean field aprox. Cascade condition

ER network, N= 105

homophily group interaction

global
cascade

no
cascade

௖

<
𝑘

>

no cascade

T



Co-evolutionary Threshold Model

Mechanism of suppression of global cascades

Segregation of adopting nodes

Fraction of adopting nodes

Size of largest non-adopting cluster

T=0.18,  <k>=3, N=105

Large cluster of 
adopting nodes

Large cluster of 
NON adopting nodes

+ small adopting clusters
௖

N=102

Byungjoon Min and M. San Miguel, Entropy (2023)

cascade
no cascade



Co-evolutionary Threshold Model

Structure of rewired networks <k>=4, N=105

p<pc
p>pc

Poisson <k>=4

Non-poissonian

Cascade regime

Poissonian

No Cascades

Byungjoon Min and M. San Miguel, Entropy (2023)



General Coordination Games

S < 0

T < 1

Pay-off matrix 

AA equilibrium: pay-off dominant

BB also equilibrium: Although each player is awarded 
less than optimal payoff, neither player has incentive to 
change strategy due to a reduction in the immediate payoff 

S+1>T, AA risk dominant equilibrium

S+1<T, BB risk dominant equilibrium

Expected pay-off playing A: <PA>= ½ 1+ ½ S

Expected pay-off playing B: <PB>= ½ T+ ½ 0

<PA> > <PB>          S+1>T

2

1

1

2

Question: Equilibrium selection for S+1<T. 

AA Pay-off dominant or BB risk dominant ?

Strategy A Strategy B

Pay-off (Pareto Dominance) and Risk Dominance

AA and BB are Nash equilibiria: No player can improve her 
payoff  by switching to the other strategy



EVOLUTIONARY GAME THEORY

EVOLUTIONARY GAME THEORY: 

Iteration of two steps for a system of N interacting agents

STEP 1: Each agent plays the game with all her neighbors in a network and accumulates a pay-off

STEP 2: Strategy update by a dynamical rule

REPLICATOR DYNAMICS: Agents choose a neighbor at random: if the payoff of the chosen 
neighbor is lower than the agents own, nothing happens. If it is larger, the agent will adopt the 
neighbors strategy with a probability proportional to the difference between the two payoffs. 

Alternatives: Unconditional Imitation, Best Response, Moran, Fermi rule…..

QUESTIONS:  i) Coexistence of strategies or consensus?
ii) Equilibrium/Consensus selection? + network coevolution



COORDINATION GAMES IN RANDOM NETWORKS

General Coordination Game
Equilibrium Selection 

T. Raducha, M. San Miguel, Sci. Rep. 12, 3373 (2022)

T=S+1

Mean field Replicator Dynamics

T<1, S<0

Risk-dominant equilibrium selected

Random network

Risk-dominant equilibrium selected
Mean field transition line valid for any <k>

⍺ proportion of agents playing  A 

Time to coordination



COEVOLUTION IN COORDINATION GAMES
Gonzalez Casado et al , Sci. Rep. 13,2866(2023)

Select randomly agent i and neighbor j. If strategy of i and j are different:  

p

rewiring

i) With probability p random rewiring

ii) With probability 1-p use the evolutionary dynamics update rule  (Replicator Dynamics)

Question:    Coordination or Fragmentation ?
Equilibrium selection?

STEP 1: Each agent plays the game with all her neighbors in a network and accumulates a pay-off

STEP 2: Strategy update and network evolution

Two strategies A B



COEVOLUTION IN COORDINATION GAMES

General Coordination Game 
B risk-dominant

A risk-dominant

A always Pay-off dominat

S+1=T (p=0)Close to transition line

Coordination in A

= 1: all players choose A

= 0: all players choose B

p=0

p=0.8

New transition line pc pf  Fragmentation

ER network, <k>= 30
N=1000

Coevolution creates a region for global 
coordination in pay-off dominance
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