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The phenomenon of synchronization in coupled oscillat-

ing systems has been a subject of substantial interest, given

its pervasive nature across a variety of fields [1]. From the

rhythmic flashing of fireflies, circadian rhythms, to the pe-

riodic oscillations in mechanical, electrical, and quantum

systems, synchronization finds diverse applications [2]. The

patterns of interaction among individual oscillators are com-

monly modeled as a network or a graph, significantly im-

pacting the genesis of the synchronized state [3]. Over the

years, significant research efforts have delved into under-

standing the evolution of synchronization in populations of

oscillators configured within a network [4]. These networks,

representing the intricate web of interactions, are integral to

dissecting the complexities of these dynamical systems.

However, many studies assume that the transition of an

oscillator’s state, necessary for achieving synchronization,

is costless. While this assumption is convenient for theoret-

ical modeling, it seems somewhat unrealistic. A more prac-

tical hypothesis would involve acknowledging that the mod-

ification of an oscillator’s state involves a certain cost. This

hypothesis brings forth a dichotomous scenario: an oscilla-

tor may decide to bear the cost necessary to alter its state,

aligning it with the others, or it may remain in its current

state, anticipating that the other oscillators will adjust their

rhythm [5]. Interpreting this from a game-theoretic perspec-

tive, the former choice mirrors an act of cooperation, while

the latter represents a choice of defection [6].

Complex networks play a vital role in the emergence of

cooperative behavior, especially the presence of highly con-

nected nodes, or hubs, in scale-free networks. Given this,

it becomes essential to explore the mechanisms responsible

for the onset of synchronization in a network of oscillators

where each node must choose whether to cooperate by syn-

chronizing their states with those of their neighbors or not.

This line of inquiry leads us towards a coevolutionary ap-

proach, intertwining the dynamics of synchronization with

game theory [7].

In this talk, I will present a novel coevolutionary model,

which is built upon the combination of Kuramoto oscillators

playing an evolutionary game [8]. We delve into the emer-

gence of cooperation and synchronization in three different

network topologies: Erdös-Rényi random graphs (ER), Ran-

dom Geometric Graphs (RGG), and Barabsi-Albert scale-

free networks (BA). This comprehensive analysis provides

a detailed view of the coevolutionary dynamics, revealing

the principles that govern the behavior of these fascinating

oscillating systems [9].

Fig. 1. Emergence of cooperation and synchronization at

global scale. The top (bottom) row illustrates the average

level of cooperation (synchronization) 〈C〉 (〈rG〉) as a func-

tion of the coupling λ and relative cost α. Each column

corresponds to a different topology, namely, ER, RGG, and

BA. Results are averages over 50 different realizations.
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