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Flashing ratches are systems where a directed motion of a

Brownian particle could be created just by switching on/off

a periodic potential. The key is the alternation between

two processes: the motion under the action of the potential

(while it is on) and free diffusion (while it is off). The pro-

tocol for switching the potential can be (i) an open-loop pro-

tocol (periodic, random, etc.), where no information of the

system is used in the switching, and (ii) a feedback protocol

(or closed-loop protocol), for which the switching is based

on the information extracted from the system. In the latter

case, the directed movement may emerge even for symmet-

ric potentials.

The system that we have focused on is a feedback flashing

ratchet, in which the external control measures the position

x(t) of an overdamped Brownian particle at regular times

tk [1]. A schematic representation of the system is depicted

in Fig. 1. Depending on the information extracted, i.e. the

value of x(tk), the control takes the value C = 1 or C =
0 and a sawtooth periodic potential V (x) is thus switched

on/off in the time interval Ik = (tk, tk+1), i.e. the particle

feels a force −CV ′(x) during that time interval.

The process of measurement entails an entropy reduction

of the particle, since the information extracted by the con-

trol (and employed in the update of the potential) concen-

trates the probability distribution of the particle position in

the microstates compatible with the result of the measure-

ment. Very recently, it has been shown that this entropy

reduction (i) can be accurately computed by measuring the

entropy of long-enough sequences of control actions and (ii)

it is essential to define a physically meaningful efficiency of

the ratchet [2].

In this work, we present an alternative framework for the

study of the feedback flashing ratchet. In particular, we show

that (x,C), i.e. the position of the particle together with

the state of the control, is a Markovian stochastic process

for which the joint probabilty P (x,C, t) obeys a differential

Chapman-Kolmogorov equation [3]. Specifically, one has

∂tP =L
(C)
FP

P +
∑

k

δ(t− tk)[−Θ1−C(x)P (x,C, t)

+ΘC(x)P (x, 1− C, t)] .
(1)

where L
(C)
FP

is the Fokker-Planck operator for the potential

CV (x), and ΘC(x) = 1 (ΘC(x) = 0) where x would make

the control be switched to the value C. The second term

on the rhs of Eq. (1), which only acts at the measurement

times tk, accounts from the transitions from (x, 1) to (x, 0)
(or vice versa) when the control is switched off (on) at the

times tk.

The Markovian character of the (x,C) process can be in-

tuitively understood, as shown in Fig. 1. At t = tk, when

a measurement takes place, the control value is updated and

its value for t = t+
k

depends on the particle position just be-

fore the measurement, x(t−
k
). Afterwards, the control value

remains constant during the time interval Ik = (tk, tk+1),
i.e. until the next measurement. In that time interval Ik,

x(t) evolves following an overdamped Langevin equation

with potential CV (x). This structure of measurement and

Langevin evolution is periodically repeated, showing that

the vector (x,C) at time t+ just depends on its previous

value at time t−.

In this work, we analyse in depth some physical conse-

quences arising from this Markovian description. In particu-

lar, we show that it is possible to derive an H-theorem for the

differential Chapman-Kolmogorov equation, supporting the

existence of a long-time regime in which the ratchet reaches

a time-periodic state. We also discuss the implications of

this result for the thermodynamic balance, in order to im-

prove our understading of the second principle—with the

contribution of the information gathered by the control.

Fig. 1. Schematic evolution of the process (x,C). In

the considered interval, two measurements of the control at

times tk and tk+1 take place. By itself, x(t) is not Marko-

vian since, in addition to x(t−), one needs C(t−)—which

determined whether the potential is on or off—to predict

x(t+). Also, C(t) is clearly non-Markovian, since it is de-

termined by the value of x(t) at the time of the last measure-

ment. Finally, the joint process (x,C) is Markovian because

(x(t−), C(t−)) univocally determines (x(t)+, C(t+)), for

all t−, t+, as explained in the text.
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