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Raúl Toral1, Javier Aguilar1 and Jose J. Ramasco1

1Instituto de Fı́sica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain.

Stochastic processes are one of the main pillars of com-

plexity science [1]. Indeed, the list of fruitful applica-

tions is endless and we can name some paradigmatic ex-

amples like the study of population dynamics in ecology,

gene expression, metabolism in cells, finances and market

crashes, epidemiology, telecommunications, chemical reac-

tions, quantum physics and active matter, to name a few [2].

As models become more intricate, there arises a techni-

cal challenge of producing numerically stochastic trajecto-

ries in feasible computation times, since unbiased meth-

ods that generate unbiased realizations of stochastic tra-

jectories may become unpractical due to lengthy compu-

tations. Alternatively, approximate numerical methods are

one of the most used strategies to extract information from

many-interacting-agents systems. In particular, the binomial

method is of extended use to deal with epidemic, ecologi-

cal and biological models, when unbiased methods like the

Gillespie algorithm can become unpractical due to high CPU

time usage required. However, some authors have criticized

the use of this approximation and there is no clear consensus

about whether unbiased methods or the binomial approach

is the best option [3, 4].

In this work, we analyze the issue on whether the bi-

nomial method is competitive compared to unbiased meth-

ods [5]. We proof, through both numerical and analytical

evidence, that the systematic errors of the binomial method

scale linearly with the discretization time. Using this re-

sult, we can establish a rule for selecting the optimal dis-

cretization time and number of simulations required to esti-

mate averages with a fixed precision while minimizing CPU

time consumption. Furthermore, we derive a rule of sim-

ple and practical use that can tell us in which cases the bi-

nomial method is superior to unbiased algorithms. In gen-

eral, the advantage of using the binomial method depends

on the target precision: the use of unbiased methods be-

comes more optimal as the target precision increases. We

quantify the relative efficiency of the binomial versus the

unbiased method as the ratio α of CPU times taken by each

method to achieve a desired precision ǫ. In particular, values

of α < 1 indicate that the unbiased method is more effective

than the binomial. We plot in panel (a) of the figure the ratio

α as a function of the precision ǫ in the case of a simulation

of an all-to-all connected Susceptible-Infected-Susceptible

model. The dots are the results of the numerical simulations

using the binomial method with the obtained optimal values

for the discretization step and number of realizations, while

the solid and dotted lines are theoretical result obtained from

our scaling analysis. In panel (b) of the same figure we fix

the precision ǫ = 0.01, and plot the CPU-time to generate

the ensemble of trajectories for different values of the basic

reproductive number R0 for both the binomial (B) and the

Gillespie (G) methods. Except for R0 ≈ 1, where they per-

form similarly, the binomial method takes always less time

than the Gillespie algorithm.

In summary, this work provides a solution for the exist-

ing debate regarding the use of the binomial approximation

to sample stochastic trajectories. The discretization time

of the binomial method needs to be chosen carefully since

large values can result in errors beyond the desired precision,

while low values can produce extremely inefficient simula-

tions. A proper balance between precision and CPU time

consumption is necessary to fully exploit the potential of this

approximation and make it useful. The efficiency of the bi-

nomial method is superior to the unbiased approaches only

when the target precision is above a certain threshold value.
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