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Spin glasses are disordered magnetic systems that exhibit

randomness and frustration, making them an example not

only of glassy systems, but also of complex systems more

broadly.

However, despite considerable effort, the effect of an ex-

ternal magnetic field (h 6= 0) on finite-dimensional systems

is not yet fully understood. It is unclear whether there is a

phase transition to a spin glass phase at all. Some results

from droplet theory suggest that there is no phase transition,

regardless of the finite dimension of the system [1]. Other

droplet model supporters believe that it only exists above six

dimensions [2]. Numerical simulations are inconclusive for

D = 3 [3] and suggest a positive answer for D = 4 [4].

Further confusion is added by the failure of the standard

field-theoretical approach, as no stable one-loop perturbative

fixed point on the renormalization group has been found be-

low or at D = 6. Finally, a two-loop computation does find

a non-trivial stable fixed point at D = 6 [5], the Gaussian

one still being unstable. This non-trivial fixed-point would

lie in the non-perturbative region, being unclear whether or

not the fixed point would survive beyond the two-loop com-

putation.

Even within the field-theoretical framework, the value of

the upper critical dimension Dh
u

for spin glasses in a field

is an open question. The classical result from replica field

theory states Dh
u
= 6, but a recent work suggests a different

value, Dh
u
= 8 [6].
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Fig. 1. Behavior of the correlation length in lattice units

as a function of the temperature for the different simulated

lattices. The crossing points indicate the presence of a phase

transition in a field (h = 0.075).

In this work, we present results from massive numeri-

cal simulations of the Ising spin glass in six dimensions in

a field using advanced computational and statistical tech-

niques, such as Multi-Spin Coding, Parallel Tempering, and

a thermalization protocol based on the monitoring of the

temperature random walk.

In Fig. 1 we show the behavior of the correlation length,

ξ2/L in lattice units, as a function of temperature for the four

lattice sizes simulated. This behavior, with crossing points,

marks the presence of phase transition. Furthermore, this

conclusion is supported with the study of a cumulant which

avoid the use of the zero modes in its definition (see Fig. 2).
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Fig. 2. Behavior of the R12 cumulant (defined avoiding the

zero modes) as a function of the temperature for the different

simulated lattices. The crossing points show the presence of

a phase transition.

Finally, we show that the phase transition is correctly de-

scribed by a replica-symmetric Hamiltonian and that the

effective critical exponents are compatible with the Gaus-

sian ones, suggesting that the upper critical dimension is

Dh
u = 6.[7]
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