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Higher-order structures are the most widely used frame-

work to embody group interactions, and the influence of

these structures on dynamical processes has been exten-

sively addressed in recent years. In this panel we propose a

metric which characterizes the overlapping between groups,

i.e. hyperedges, from the perspective of the individual, i.e.

node.

The surrounding environment of a node is determined by

the hyperedges to which it is connected. In the case of

pairwise interactions, each of them accounts for a different

neighbour. However, in presence of higher order interac-

tions, a node may have coincident nodes in different hy-

peredges. Thus, we introduce, for each node i, the local

overlapness T
(m)
i of the m−order hyperedges. This met-

ric measures the normalized difference between the number

of unique neighbours S
(m)
i the node has, and the minimum

number of neighbours S
(m),−
i the node must have, given its

value of connectivity k
(m)
i . The expression reads

T
(m)
i = 1−

S
(m)
i − S

(m),−
i

S
(m),+
i − S

(m),−
i

, (1)

where S
(m),+
i is the maximum number of unique neighbors

a node must have given its generalized degree k
(m)
i . In the

definition, we consider the substraction to 1 in order to set

T
(m)
i = 0 when there is no local overlapness at all, and

T
(m)
i = 1 for the maximum overlapping scenario. Once de-

fined the set of local metrics, we introduce the global over-

lapness as the weighted mean T
(m). In this panel we are

going to restrict to just to pairs (1-hyperedges) and triplets

(2-hyperedges), and thus our control parameter is T = T
(2).

We have studied the relevancy of this metric on real data sets,

obtaining a broad range of metric values.

Henceforth, we focus on its impact on contagion and syn-

chronization dynamics by means of a synthetic structure.

For the shake of simplicity, as contagion dynamics we con-

sider an Higher-order Susceptible-Infected-Susceptible (HO

SIS) compartmental model. According to it, the contagion

may occur through both pairs and triplets with two distinct

transmission ratios rescalated by the recovery rate, λ(1) and

λ(2) respectively. On the other hand, as synchronization dy-

namics we contemplate the higher-order Kuramoto model,

where oscillators asociated to each node evolve according to

a individual natural frequency and to the coupling with pairs

and triplets. The strength of the former is named λ(1) and

the strength of the latter is λ(2).

Our results show that the order of both contagion and syn-

chronization transitions changes depending on the level of

overlapness. We characterize in Fig 1 and Fig 2 the phase

diagrams of both dynamics as a function of the strength of

the pairwise interactions and the overlapness. The similar-

ity between the diagrams indicates universality in our find-

ings: when higher-order structures are not locally congre-

gated and connect all regions of the structure, explosiveness

arises. However, in case they just enforce locally several

nodes subsets, the phenomenology changes and a second or-

der transition is obtained. These reasoning are validated by

microscopic analysis based on effective frequencies and lo-

cal synchronization on Kuramoto dynamics.
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Fig. 1. SIS dynamics phase diagram is shown for λT =

3. Three phases emerge: absorbent phase where epidemic

dies out, active phase where an endemic stationary state is

reached, and a bi-stable region where the outcome depends

on the initial conditions.

0.0 0.2 0.4 0.6 0.8 1.0
T(2)

0

2

4

6

8

10

λ(1) SYNCH

DESYNCH
BI

0.0

0.2

0.4

0.6

0.8

1.0

r

Fig. 2. Kuramoto dynamics phase diagram is shown for

2−hyperedges coupling λ(2)
= 3. Three regions emerge:

synchronization where all oscillators are locked, desynchro-

nization where are unlocked, and a bi-stable regime.


