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The idea that biological and artificial learning systems

may extract crucial functional advantages by exploiting col-

lective effects, in general, and critical phenomena, in par-

ticular, has been gaining more and more momentum in the

last decades. At the edge of a phase transition, between or-

der and chaos, the system can exploit the combined advan-

tages of stability (order) and responsiveness to perturbations

(chaos) without saturating and obtaining an optimal compu-

tational performance. From a biological point of view, it

has been suggested that computational capabilities of brain

networks stem from that delicate balance between order and

disorder [1].

Recent works in neuroscience has underscored the di-

chotomy between two types of phase transitions in neu-

ral network dynamics: Type-I criticality, consisting on a

transition to a synchronous state; and Type-II criticality,

a transition to a non-synchronous and chaotic regime [2].

Both types of criticality can be characterized by the shape

of the spectral distribution -the probability distribution of

eigenvalues- of the adjacency matrix, which encodes the

topological structure of the network. Hence, Type-I is re-

lated with the emergence of a dominant eigenvalue, also

called ”outlier”; while Type-II is characterized by a bulk of

eigenvalues (see Figure 1).

Here, we aim to shed further light on these issues by

studying one of the simplest possible neural network mod-

els, very similar to the classical model of Sompolinsky,

Crisanti, and Sommers [3]. In particular, our goal is to es-

tablish a correspondence between the Ising and spin-glass

transitions in statistical physics and type-I and type-II criti-

cality in simple neural-network models.

Fig. 1. Type I vs Type II criticality. Two different realiza-

tions for system (1) at the Ferromagnetic (F) and Spin-Glass

(SG) regimes, respectively. The inset shows the spectra dis-

tribution for the adjacency matrix, gJ .

Our model consists of a fully-connected network with

N neurons, each one described by its time-dependent rate,

xi(t), with i = 1, 2, ..., N , whose dynamics obeys the fol-

lowing set of coupled stochastic differential equations

ẋi = −xi + tanh



g
∑

j

Jijxj



 , i = 1, . . . , N (1)

where the synaptic weights Jij are (quenched) Gaussian ran-

dom variables with mean J0 and variance J (convenient

scaled to guarantee the convergence in the infinite-network-

size limit). To study analytically this problem we use a

Dynamical Mean Field (DMF) approach leading to a self-

consistent stochastic equation for the dynamics of a repre-

sentative neuron,

ẋ(t) = −x(t) + tanh[J0gM(t) + φ(t)]. (2)

where M(t) = 〈x(t)〉 is the first moment, and φ(t) is

a white-noise process with zero mean and 〈φ(t)φ(t′)〉 =
J2g2 〈x(t)x(t′)〉. This simple equation is equivalent to the

well-known Sherrington-Kirkpatrick model for spin-glasses,

within a replica symmetric ansatz, on which 1/g plays the

role of the temperature. The main result is shown in Figure

2, on which the first moment (M ) and the second moment

(q) are plotted as a function of the parameters φ1 = J0/J
and φ2 = 1/gJ . We proved analytically that three dif-

ferent regimes emerge (paramagnetic (P), ferromagnetic (F)

and spin-glass (SG), by analogy), where Type-I criticality

is characterized as a transition from P to F regimes, while

Type-II is defined as a transition from P to SG regimes.

This work serves as an initial point to study the emer-

gence of criticality for more sophisticated neural networks

– for biological-plausible architectures: for instance, imple-

menting the Dale’s principle– by means of DMF framework.

Fig. 2. Left and middle: Heat map of the time-averaged

mean activity M̂ (left) and mean square activity q̂ (middle)

obtained from simulations, as a function of the parameters

φ1, φ2. The white line shows the theoretically predicted

critical lines separating the paramagnetic, ferromagnetic and

spin-glass phases for fixed point solutions. Right: Symbols

show M̂ (top) and q̂ (bottom) obtained from simulations,

versus φ2. Full lines show the theoretically predicted asymp-

totic behaviour around the critical point. The inset shows the

effect of increasing the system size.
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