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Fig. 1. Plot of the shear (η) and bulk (ηb) viscosities as func-

tions of β for α = 0.4, 0.6, 0.8, and 1.

The most widely used model for a granular gas is the in-

elastic hard-sphere model (IHSM), where the grains are as-

sumed to be perfectly smooth spheres colliding with a con-

stant coefficient of normal restitution α [1, 2]. A much more

tractable model is the inelastic Maxwell model (IMM), in

which the velocity-dependent collision rate is replaced by

an effective mean-field constant [3]. This simplification has

been taken advantage of by many researchers in the past

to find a number of exact results within the IMM. On the

other hand, both the IHSM and IMM neglect the impact

of roughness on the dynamic properties of a granular gas.

This is remedied by the inelastic rough hard-sphere model

(IRHSM), where, apart from the coefficient of normal resti-

tution, a constant coefficient of tangential restitution β is in-

troduced [4].

In parallel to the simplification carried out when going

from the IHSM to the IMM, we have recently proposed an

inelastic rough Maxwell model (IRMM), as a simplification

of the IRHSM, and derived the corresponding exact expres-

sions for the most relevant collisional moments [5]. The aim

of the present work is to apply the IRMM to the derivation

of the exact Navier–Stokes transport coefficients predicted

by the model.

As an example, Fig. 1 shows the shear and bulk viscosities

as functions of β for α = 0.4, 0.6, 0.8, and 1. As we can

see, both coefficients are nonmonotonic functions of both α

and β.
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