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The Enskog kinetic theory has a longstanding tradition

as a successful approach for the computation of transport

properties in granular gases [1]. However, its relation with

random walk approaches for the computation of such prop-

erties remains widely unexplored; the present work aims to

shed further light on this relation to pave the way for future

research in this field.

To illustrate the aforementioned relation, in a first stage

we employ the (inelastic) Enskog-Lorentz kinetic equation

in tandem with DSMC simulations to compute the mean

square displacement (MSD) of intruders immersed in a gran-

ular gas of smooth inelastic hard spheres (grains). We con-

sider the cases where the intruder-grain system includes

(lacks) an interstitial molecular gas that plays the role of a

thermal bath (background).

In the absence of such an interstitial fluid, there is no

mechanism in this freely cooling granular gas to compen-

sate for the continuous energy loss of the grains due to the

dissipative collisions between them. Consequently, the ran-

dom kicks experienced by an intruder upon collisions with

grains also become less and less energetic in the course of

time, and the intruder’s motion is strongly slowed down with

respect to the case of standard Brownian motion (as a mat-

ter of fact, the intruder’s MSD exhibits a logarithmic time

growth [2] instead of a linear one, and there is e.g. no longer

equivalence between ensemble-averaged and time-averaged

MSD among other peculiarities of this ultraslow anomalous

diffusion).

We then incorporate the interstitial fluid, which has a two-

fold effect; on the one hand, it induces a viscous drag force

acting on intruders and grains; on the other hand, it feeds

both particle species with energy, this supply being mod-

eled via a stochastic Langevin-like force defined in terms of

the background temperature Tb. As a result, in this driven

granular gas the linear time growth of the intruder’s MSD is

restored (normal diffusion). However, the calculation of the

associated intruder’s diffusivity D proves a technically chal-

lenging task which has recently been tackled in the so-called

first and second Sonine approximation [3].

In a second step, we invoke an effective random walk pic-

ture of the intruder’s motion to obtain an intuitive interpre-

tation of the intricate dependence of the diffusion coefficient

on the main system parameters, both with and without the

interstitial fluid [2, 3]. Despite the obvious differences in the

time dependence of the MSD, for a proper parameter choice

one observes in both cases a nonmonotonic behaviour of the

MSD at a given time t as a function of the restitution coef-

ficient α for grain-grain collisions (see Fig. 1 for the case

with interstitial fluid and intruders mechanically equivalent

to grains [selfdiffusion]). The idea underlying the random

walk approach is to decompose the MSD into a product of

the number of intruder-grain collisions N(t) and the square

of an effective mean free path ℓ2
e

between collisions. This
latter quantity differs from the actual mean free path because

of the persistence of the (strongly anisotropic) collision rules

for hard spheres. While N(t) increases with α, ℓ2
e

decreases

with this quantity because of the increased backscattering

of intruder-grain collisions. The competition between the

two effects then explains the aforementioned non-monotonic

behaviour of the MSD. We anticipate that the overarching

random walk approach presented here very likely applies to

other types of driven systems lacking interstitial fluids, and

in this sense the random walk interpretation is deemed to be

very general.
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Fig. 1. Plot of the (adimensionalized) self-diffusion coef-

ficient D∗(α)/D∗(1) ≡ D(α)/D(1) versus the coefficient

of restitution α for a system with (adimensionalized) back-

ground temperature T ∗

b = 1 and three different values of the

volume fraction φ occupied by grains: (a) φ = 0.01 (black

lines and squares); (b) φ = 0.1 (blue lines and circles); and

(c) φ = 0.25 (red lines and triangles). The symbols refer to

the DSMC results, while the solid (dashed) lines correspond

to the theoretical results obtained from the second (first) So-

nine approximation. Here, D∗(1) is the elastic-limit value

of the self-diffusion coefficient consistently obtained in each

approximation.
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